ALL LINEAR COISOTROPICS IN $T^*\mathbb{T}^n$ MAY BE FOLIATED BY STANDARD SUBTORI

1. INTRODUCTION

A submanifold C of the symplectic manifold (M, ω) is said to be *coisotropic* if $(TC)^{\omega} \subset TC$; i.e., C is coisotropic if the symplectic orthocomplement to its tangent bundle is a subbundle of the tangent bundle itself. In particular, a coisotropic submanifold of the least allowable dimension is a Lagrangian submanifold.

Every coisotropic submanifold is endowed with a *characteristic foliation*, also referred to as a *null foliation*. In short, the leaves of the characteristic foliation of C are the integral curves of the Hamiltonian vector fields of its defining functions.

All of our results pertain to linear coisotropic submanifolds in $T^*\mathbb{T}^n$. A *d*-codimensional linear coisotropic is of the form $\mathcal{C} = \mathbb{T}^n \times \{\mathbf{v}_1 \cdot \boldsymbol{\xi} = \ldots = \mathbf{v}_d \cdot \boldsymbol{\xi} = 0\}$ for $\mathbf{v}_j \in \mathbb{R}^n$ ($\boldsymbol{\xi}$ are symplectically dual to $x \in \mathbb{T}^n$). In this note, we show that

Theorem 1.1. Let $C \subset T^*\mathbb{T}^n$ be any linear coisotropic submanifold. Then there exists a linear symplectomorphism Φ of $T^*\mathbb{T}^n$ for which $\Phi(\mathcal{C}) = \widetilde{\mathcal{C}}$, where the leaves of the characteristic foliation of $\widetilde{\mathcal{C}}$, projected down to \mathbb{T}^n , are dense in standard subtori.

(A standard k-subtorus is any k-dimensional subtorus of \mathbb{T}^n of the form $\mathbb{T}^k \times \{\text{point}\}$.)

2. Models associated to linear coisotropics

Let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$. As coordinates on the symplectic manifold $(T^*\mathbb{T}^n, \omega)$, we take (x, ξ) , where $\omega = d\xi \wedge dx$. We study linear coisotropics in $T^*\mathbb{T}^n$, defined as follows:

Definition 2.1. A *d*-codimensional *linear coisotropic submanifold* $\mathcal{C} \subset T^*\mathbb{T}^n$ has the form

$$\mathcal{C} = \mathcal{C}(\mathbf{v}_1, \dots, \mathbf{v}_d) = \mathbb{T}_x^n \times \{\mathbf{v}_1 \cdot \xi = \dots = \mathbf{v}_d \cdot \xi = 0\},$$

where $\{\mathbf{v}_1, \ldots, \mathbf{v}_d\} \subset \mathbb{R}^n$ is linearly independent over \mathbb{R} .

A simple linear coisotropic is $\{\xi_1 = \ldots = \xi_d = 0\}$. In fact, locally every coisotropic is of this form [1, Theorem 21.2.4].

We say $C_1(\mathbf{v}_1, \ldots, \mathbf{v}_d)$ is symplectically equivalent to $C_2(\mathbf{w}_1, \ldots, \mathbf{w}_d)$ if there exists $P \in GL_n(\mathbb{Z})$ such that $P\mathbf{v}_j = \mathbf{w}_j$ for each j. Such a P descends to a diffeomorphism of the torus, which then lifts to a symplectomorphism of $T^*\mathbb{T}^n$ mapping C_1 to C_2 .

With the goal of finding 'model' linear coisotropics, we first consider the special case where $\mathbf{v}_j \in \mathbb{Q}^n$. Consider the rational linear coisotropic $\mathcal{C}(\mathbf{v}_1, \ldots, \mathbf{v}_d)$. We may clear denominators and take the $\mathbf{v}_j \in \mathbb{Z}^n$. We identify \mathcal{C} with the matrix $C = (\mathbf{v}_1 | \ldots | \mathbf{v}_d)$, and call this a *representation* of \mathcal{C} . Since the \mathbf{v}_j are independent, C has rank d. Equivalently, the \mathbf{v}_j are a basis for a rank d sublattice of \mathbb{Z}^n .

Proposition 2.2. Let \mathcal{D} be a PID, and let $A \in M_{n \times d}(\mathcal{D})$ have rank d. Then there exist invertible $P \in M_{n \times n}(\mathcal{D})$, $Q \in M_{d \times d}(\mathcal{D})$ such that $PAQ = (a_1\mathbf{e}_1|\ldots|a_d\mathbf{e}_d)$, where all $a_j \neq 0$.

This result is adapted from [2, Section 3.7]. Thus, there exists $P \in GL_n(\mathbb{Z}), Q \in GL_d(\mathbb{Z})$ for which PCQ has the diagonal form described in the proposition. Note that $(a_1\mathbf{e}_1|\ldots|a_d\mathbf{e}_d)$ represents the coisotropic $\{\xi_1 = \ldots = \xi_d = 0\}$. The right multiplication by Q merely amounts to a change of basis for the aforementioned rank d sublattice, so C and CQ represent the same coisotropic. Hence, the existence of P tells us that C is symplectically equivalent to the 'rational model' $\{\xi_1 = \ldots = \xi_d = 0\}$; and any two d-codimensional rational linear coisotropics are equivalent, as they are both equivalent to this model.

Next, we allow $\mathbf{v}_j \in \mathbb{R}^n$. Given an arbitrary linear coisotropic $\mathcal{C}(\mathbf{v}_1, \ldots, \mathbf{v}_d)$, let $\overline{\mathcal{O}}$ denote the set of leaf closures in the foliation of \mathcal{C} , and let $\mathscr{L} \in \overline{\mathcal{O}}$. In the rational case, leaves are *a priori* closed. This implies that $\pi_{\mathbb{T}^n} \mathscr{L}$, the projection of the (closed) leaf onto the torus, is a *d*-dimensional subtorus. The rational coisotropic is equivalent to $\{\xi_1 = \ldots = \xi_d = 0\}$, whose projected leaves are

$$\pi_{\mathbb{T}^n}\mathscr{L} = \{ (x_1, \dots, x_d, c_{d+1}, \dots, c_n), \ x_j \in S^1 \}.$$

for any choice of the constants c_i .

Definition 2.3. A standard k subtorus in \mathbb{T}^n is a subtorus of the form $\mathbb{T}^k \times \{\text{point}\} \subset \mathbb{T}^n$.

So the *d*-codimensional rational model is foliated by standard *d* subtori. If the \mathbf{v}_i are not assumed to be rational, then $\pi_{\mathbb{T}^n} \mathscr{L}$ are subtori of dimension $k \geq d$. We find 'models' for arbitrary linear coisotropics, in two steps.

Lemma 2.4. We can express each \mathbf{v}_i , $1 \leq i \leq d$, as a linear combination

$$\mathbf{v}_i = \sum_{j=1}^{k_i} \alpha_j^i \mathbf{w}_j^i$$

such that (1) for each i, $\{\mathbf{w}_1^i, \ldots, \mathbf{w}_{k_i}^i\} \subset \mathbb{Z}^n$ is independent, and (2) for each i, the coefficients $\alpha_i^i \in \mathbb{R}$ are \mathbb{Q} -independent.

Proof. The proof is the same for each \mathbf{v}_i , so fix i and let $\mathbf{v}_i =: \mathbf{v} = (v^1 \cdots v^n)^t$. Consider the subspace $\operatorname{span}_{\mathbb{Q}}\{v^1, \ldots, v^n\} \subset \mathbb{R}_{\mathbb{Q}}$, where $\mathbb{R}_{\mathbb{Q}}$ is the space of reals over the rationals. The subspace is finite dimensional; say it has dimension $k \leq n$. Any maximal \mathbb{Q} -independent subset of the spanning set $\{v^1, \ldots, v^n\}$ is a basis. The argument is analogous for any basis obtained this way, so WLOG take the basis $\{v^1, \ldots, v^k\}$. Certainly, for each i in $1 \leq i \leq n$, there exists a unique k-tuple $(c_1^i, \ldots, c_k^i) \in \mathbb{Z}^k$ (in \mathbb{Z}^k , as opposed to \mathbb{Q}^k , after clearing denominators and recalibrating the basis) for which $v^i = \sum_{j=1}^k c_j^i v^j$.

We know that for $1 \le i \le k$, $c_i^i = 1$ and $c_j^i = 0$ for $j \ne i$. In general, we have

$$\mathbf{v} = \begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^k c_j^1 v^j \\ \vdots \\ \sum_{j=1}^k c_j^n v^j \end{pmatrix} = \sum_{j=1}^k v^j \begin{pmatrix} c_j^1 \\ \vdots \\ c_j^n \end{pmatrix}.$$

Let $\alpha_j := v^j$; since the v^j , $1 \leq j \leq k$, are Q-independent (being a basis), this choice of α_j fulfills condition (2). Also, let $\mathbf{w}_j := (c_j^1 \cdots c_j^n)^t \in \mathbb{Z}^n$. It is clear that $\{\mathbf{w}_j\}_{j=1}^k$ is linearly independent: if we were to write the $n \times k$ matrix $(\mathbf{w}_1 | \dots | \mathbf{w}_k)$, the $k \times k$ minor matrix formed with the first k rows would just be the identity matrix. So condition (1) is satisfied. **Lemma 2.5.** Assume $\pi_{\mathbb{T}^n} \mathscr{L}$ is a k-dimensional subtorus. Then there exists independent $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subset \mathbb{Z}^n$ and for each $i, 1 \leq i \leq d$, there exist $\beta_m^i \in \mathbb{R}$ $(1 \leq m \leq k)$ for which

(2.1)
$$\mathbf{v}_i = \sum_{m=1}^k \beta_m^i \mathbf{u}_m.$$

For fixed $i, 1 \leq i \leq d$, the coefficients β_m^i may not be Q-independent: see Example 2.7.

Proof. After decomposing each \mathbf{v}_i , $1 \leq i \leq d$, as in Lemma 2.4, we next pool all the \mathbf{w}_j^i together to obtain the set $S = {\{\mathbf{w}_j^i\}_{1 \leq i \leq d, 1 \leq j \leq k_i}}$ consisting of as many as $\sum_{i=1}^d k_i$ distinct vectors. Then we trim S by finding any maximal linearly independent subset S'; S' must contain exactly k elements, because $\pi_{\mathbb{T}^n} \mathscr{L}$ was assumed to be k-dimensional. We relabel elements and write $S' = {\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}}.$

Then S' is a basis for $\operatorname{span}_{\mathbb{R}}(S)$. For each $i, \mathbf{v}_i \in \operatorname{span}_{\mathbb{R}}\{\mathbf{w}_1^i, \ldots, \mathbf{w}_{k_i}^i\} \subset \operatorname{span}_{\mathbb{R}}(S)$. Thus, each \mathbf{v}_i can be written as a linear combination of the elements of S'.

This leads to our main result.

Theorem 2.6. Let $C = C(\mathbf{v}_1, \ldots, \mathbf{v}_d)$ for $\mathbf{v}_1, \ldots, \mathbf{v}_d \in \mathbb{R}^n$. Suppose that $\pi_{\mathbb{T}^n} \mathscr{L}$ is kdimensional. Then there exists a linear symplectomorphism $\Phi : T^*\mathbb{T}^n \to T^*\mathbb{T}^n$ such that $\Phi(\mathcal{C}) = \widetilde{\mathcal{C}}$, where the leaves of the null foliation of $\widetilde{\mathcal{C}}$, projected down to the torus, are dense in the standard k-dimensional subtori of \mathbb{T}^n . (That is, $\widetilde{\mathcal{C}} = \mathcal{C}(\tilde{\mathbf{v}}_1, \ldots, \tilde{\mathbf{v}}_d)$, where $\tilde{\mathbf{v}}_i \in \mathbb{R}^k \times \{0\} \subset \mathbb{R}^n$.)

Proof. According to Lemma 2.5, for each $i, 1 \leq i \leq d$, we may write $\mathbf{v}_i = \sum_{m=1}^k \beta_m^i \mathbf{u}_m$, for real coefficients β_m^i . Then we have

$$\mathcal{C} = \left\{ \sum_{m=1}^k \beta_m^1 \mathbf{u}_m \cdot \boldsymbol{\xi} = \ldots = \sum_{m=1}^k \beta_m^d \mathbf{u}_m \cdot \boldsymbol{\xi} = 0 \right\}.$$

We then form the rank k matrix $(\mathbf{u}_1|\ldots|\mathbf{u}_k)$, and (possibly after changing bases for the sublattice of \mathbb{Z}^n generated by $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$) convert it to the normal form $(a_1\mathbf{e}_1|\ldots|a_k\mathbf{e}_k)$, from which arises the coisotropic

$$\widetilde{\mathcal{C}} = (\widetilde{\mathbf{v}}_1, \dots, \widetilde{\mathbf{v}}_d), \quad \widetilde{\mathbf{v}}_i := \sum_{m=1}^k \beta_m^i a_m \mathbf{e}_m.$$

Since $(\mathbf{u}_1 | \dots | \mathbf{u}_k)$ is converted to $(a_1 \mathbf{e}_1 | \dots | a_k \mathbf{e}_k)$, there exists $P \in GL_n(\mathbb{Z})$ such that

$$(P\mathbf{u}_1|\ldots|P\mathbf{u}_k) = (a_1\mathbf{e}_1|\ldots|a_k\mathbf{e}_k).$$

Define $\Phi : (x,\xi) \longmapsto (Px, (P^{-1})^t \xi)$, a linear symplectomorphism of $T^*\mathbb{T}^n$. It remains to show that Φ maps \mathcal{C} to $\widetilde{\mathcal{C}}$. Suppose $(x,\xi) \in \mathcal{C}$. Then

$$\tilde{\mathbf{v}}_i \cdot \left(P^{-1}\right)^t \xi = \sum_{m=1}^k \beta_m^i a_m \mathbf{e}_m \cdot \left(P^{-1}\right)^t \xi = \sum_{m=1}^k \beta_m^i P^{-1}(a_m \mathbf{e}_m) \cdot \xi = \sum_{m=1}^k \beta_m^i \mathbf{u}_m \cdot \xi = \mathbf{v}_i \cdot \xi = 0,$$

as required.

Finally, since the last n - k entries of each $\tilde{\mathbf{v}}_i$ are zero, the projected leaf closures of $\widetilde{\mathcal{C}}$ are the standard k-subtori.

Example 2.7. Consider the coisotropic $C(\mathbf{v}_1, \mathbf{v}_2)$ with $\mathbf{v}_1 = (1 \ 0 \ \pi \ \pi)^t$, $\mathbf{v}_2 = (e \ 1 \ e \ e)^t$. By the method in the proof of the theorem, we may produce

$$\hat{\mathcal{C}}(\tilde{\mathbf{v}}_1, \tilde{\mathbf{v}}_2), \quad \tilde{\mathbf{v}}_1 = (1 \ 0 \ \pi \ 0)^t, \quad \tilde{\mathbf{v}}_1 = (e \ 1 \ e \ 0)^t,$$

which is symplectically equivalent to C, and whose foliation is by *standard* 3-subtori $\pi_{\mathbb{T}^4}\mathscr{L} = \{(x_1, x_2, x_3, c_4)\}.$

Let $\mathcal{C} \subset T^*\mathbb{T}^n$ be any *d*-codimensional linear coisotropic submanifold, so that \mathcal{C} is foliated, in \mathbb{T}^n , by (possibly nonstandard) *k*-dimensional subtori $(d \leq k)$.

Definition 2.8. Let \mathcal{M} be a linear coisotropic that is symplectically equivalent to \mathcal{C} . If \mathcal{M} is of the form $\{\mathbf{u}_1 \cdot \boldsymbol{\xi} = \ldots = \mathbf{u}_d \cdot \boldsymbol{\xi} = 0\}$, where $\mathbf{u}_j \in \mathbb{R}^k \times \{0\}$, then we call \mathcal{M} a model coisotropic associated with \mathcal{C} .

Each leaf in the foliation of any model coisotropic associated with C, projected to the base, is dense in a standard k-dimensional subtorus $\mathbb{T}^k \times \{\texttt{point}\}$. Theorem 2.6 tells us that all linear coisotropics have an associated model. Careful inspection of the example shows that models associated with a given linear coisotropic are not unique.

References

- Lars Hörmander, The analysis of linear partial differential operators III, Pseudo-Differential Operators, Springer Verlag, Classics in Mathematics, Berlin, 1985.
- [2] Nathan Jacobson, Basic algebra I, W.H. Freeman and Company, second edition, New York, 1985.